26 research outputs found

    Change of ears creation of AHSS steels after heat treatment of zinc coating

    Get PDF
    The article deals with the normal anisotropy, the earring evaluation of deep-drawing steels DC06, micro-alloyed steel H220 and steel with transformation induced plasticity TRIP RAK 40/70 and deals with the influence of annealing temperature to ears creation of H220 steel and TRIP RAK 40/70 steel. The evaluation of normal anisotropy has been made by tensile test on TIRA test 2300 according standards STN EN 10002-1+AC1 and STN 42 0321. The evaluation of earring degree has been carried out on the cups, which have been drawn on a hydraulic press Fritz Muller 100

    Analysis of Cutting Surface During Cutting of Electric Sheets

    No full text
    The contribution evaluates the influence of the size of the cutting gap on the quality of the cutting surface during the cutting process. Four types of electrical sheets were evaluated. Examined sheet types have the nominal thickness of 0.65 and 0.5 mm. Sheets differ in mechanical properties (yield strength, ultimate tensile strength, and elongation). For the impact analysis, four values of the 0.02, 0.05, 0.1, and 0.2 mm cutting gap were used.Анализируется влияние величины зазора резки на качество поверхности реза при обработке резанием. Исследовались четыре типа электротехнических листов с номинальной толщиной 0,65 и 0,5 мм и различными механическими характеристиками (предел текучести, предел прочности при растяжении и относительное удлинение). Для анализа влияния указанных факторов использовались четыре значения зазора резки: 0,02; 0,05; 0,1 и 0,2 мм

    Anomalies of ac driven solitary waves with internal modes: Nonparametric resonances induced by parametric forces

    Get PDF
    We study the dynamics of kinks in the ϕ4\phi^4 model subjected to a parametric ac force, both with and without damping, as a paradigm of solitary waves with internal modes. By using a collective coordinate approach, we find that the parametric force has a non-parametric effect on the kink motion. Specifically, we find that the internal mode leads to a resonance for frequencies of the parametric driving close to its own frequency, in which case the energy of the system grows as well as the width of the kink. These predictions of the collective coordinate theory are verified by numerical simulations of the full partial differential equation. We finally compare this kind of resonance with that obtained for non-parametric ac forces and conclude that the effect of ac drivings on solitary waves with internal modes is exactly the opposite of their character in the partial differential equation.Comment: To appear in Phys Rev

    Nonadiabatic effects in a generalized Jahn-Teller lattice model: heavy and light polarons, pairing and metal-insulator transition

    Full text link
    The ground state polaron potential of 1D lattice of two-level molecules with spinless electrons and two Einstein phonon modes with quantum phonon-assisted transitions between the levels is found anharmonic in phonon displacements. The potential shows a crossover from two nonequivalent broad minima to a single narrow minimum corresponding to the level positions in the ground state. Generalized variational approach implies prominent nonadiabatic effects:(i) In the limit of the symmetric E-e Jahn- Teller situation they cause transition between the regime of the predominantly one-level "heavy" polaron and a "light" polaron oscillating between the levels due to phonon assistance with almost vanishing polaron displacement. It implies enhancement of the electron transfer due to decrease of the "heavy" polaron mass (undressing) at the point of the transition. Pairing of "light" polarons due to exchange of virtual phonons occurs. Continuous transition to new energy ground state close to the transition from "heavy" polaron phase to "light" (bi)polaron phase occurs. In the "heavy" phase, there occurs anomalous (anharmonic) enhancements of quantum fluctuations of the phonon coordinate, momentum and their product as functions of the effective coupling. (ii) Dependence of the polaron mass on the optical phonon frequency appears.(iii) Rabi oscillations significantly enhance quantum shift of the insulator-metal transition line to higher values of the critical effective e-ph coupling supporting so the metallic phase. In the E-e JT case, insulator-metal transition coincide with the transition between the "heavy" and the "light" (bi)polaron phase at certain (strong) effective e-ph interaction.Comment: Paper in LaTex format (file jtseptx.tex) and 9 GIF-figures (ppic_1.gif,...ppic_9.gif

    Interplay of disorder and nonlinearity in Klein-Gordon models: Immobile kinks

    Full text link
    We consider Klein-Gordon models with a δ\delta-correlated spatial disorder. We show that the properties of immobile kinks exhibit strong dependence on the assumptions as to their statistical distribution over the minima of the effective random potential. Namely, there exists a crossover from monotonically increasing (when a kink occupies the deepest potential well) to the non-monotonic (at equiprobable distribution of kinks over the potential minima) dependence of the average kink width as a function of the disorder intensity. We show also that the same crossover may take place with changing size of the system.Comment: 7 pages, 4 figure

    Resonances in the dynamics of ϕ4\phi^4 kinks perturbed by ac forces

    Get PDF
    We study the dynamics of ϕ4\phi^4 kinks perturbed by an ac force, both with and without damping. We address this issue by using a collective coordinate theory, which allows us to reduce the problem to the dynamics of the kink center and width. We carry out a careful analysis of the corresponding ordinary differential equations, of Mathieu type in the undamped case, finding and characterizing the resonant frequencies and the regions of existence of resonant solutions. We verify the accuracy of our predictions by numerical simulation of the full partial differential equation, showing that the collective coordinate prediction is very accurate. Numerical simulations for the damped case establish that the strongest resonance is the one at half the frequency of the internal mode of the kink. In the conclusion we discuss on the possible relevance of our results for other systems, especially the sine-Gordon equation. We also obtain additional results regarding the equivalence between different collective coordinate methods applied to this problem.Comment: 23 pages, 7 figures, REVTeX, accepted for publication in Phys. Rev.

    On the existence of internal modes of sine-Gordon kinks

    Get PDF
    We study whether or not sine-Gordon kinks exhibit internal modes or ``quasimodes.'' By considering the response of the kinks to ac forces and initial distortions, we show that neither intrinsic internal modes nor ``quasimodes'' exist in contrast to previous reports. However, we do identify a different kind of internal mode bifurcating from the bottom edge of the phonon band which arises from the discretization of the system in the numerical simulations, thus confirming recent predictions.Comment: 4 pages, 2 figures, REVTeX, to appear as a Rapid Communication in Phys Rev E (July 1st

    Anomalous resonance phenomena of solitary waves with internal modes

    Get PDF
    We investigate the non-parametric, pure ac driven dynamics of nonlinear Klein-Gordon solitary waves having an internal mode of frequency Ωi\Omega_i. We show that the strongest resonance arises when the driving frequency δ=Ωi/2\delta=\Omega_i/2, whereas when δ=Ωi\delta=\Omega_i the resonance is weaker, disappearing for nonzero damping. At resonance, the dynamics of the kink center of mass becomes chaotic. As we identify the resonance mechanism as an {\em indirect} coupling to the internal mode due to its symmetry, we expect similar results for other systems.Comment: 4 pages, 4 figures, to appear in Phys Rev Let

    On the theory of wannier exciton in a disordered structure

    No full text

    Time Signals Whose Standard Deviations Diverge

    No full text
    corecore